Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Cell Rep ; 37(7): 110007, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788619

RESUMEN

CCR4-NOT deadenylase is a major regulator of mRNA turnover. It contains two heterogeneous catalytic subunits CNOT7/8 and CNOT6/6L in vertebrates. The physiological function of each catalytic subunit is unclear due to the gene redundancy. In this study, Cnot6/6l double knockout mice are generated. Cnot6l-/- female mice are infertile, with poor ovarian responses to gonadotropins. Follicle-stimulating hormone (FSH) stimulates the transcription and translation of Cnot6 and Cnot6l in ovarian granulosa cells. CNOT6/6L function as key effectors of FSH in granulosa cells and trigger the clearance of specific transcripts in granulosa cells during preantral to antral follicle transition. These results demonstrate that FSH modulates granulosa cell function by stimulating selective translational activation and degradation of existing mRNAs, in addition to inducing de novo gene transcription. Meanwhile, this study provides in vivo evidence that CNOT6/6L-mediated mRNA deadenylation is dispensable in most somatic cell types, but is essential for female reproductive endocrine regulation.


Asunto(s)
Folículo Ovárico/fisiología , Ribonucleasas/metabolismo , Animales , Exorribonucleasas/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Gonadotropinas/metabolismo , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Folículo Ovárico/metabolismo , Ovario/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Ribonucleasas/fisiología , Diferenciación Sexual
2.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779412

RESUMEN

Ribonuclease 7 (RNase 7) is an antimicrobial peptide that prevents urinary tract infections (UTI); however, it is yet unknown how RNASE7 genetic variations affect its antimicrobial activity and its mitigation of UTI risk. This study determined whether the RNASE7 SNP rs1263872 is more prevalent in children with UTI and defined how rs1263872 affects RNase 7's antimicrobial activity against uropathogenic E. coli (UPEC). We performed genotyping for rs1263872 in 2 national UTI cohorts, including children enrolled in the Randomized Intervention for Children with Vesicoureteral Reflux trial or the Careful Urinary Tract Infection Evaluation study. Genotypes from these cohorts were compared with those of female controls with no UTI. To assess whether rs1263872 affects RNase 7's antimicrobial activity, we generated RNase 7 peptides and genetically modified urothelial cultures encoding wild-type RNase 7 and its variant. Compared with controls, girls in both UTI cohorts had an increased prevalence of the RNASE7 variant. Compared with the missense variant, wild-type RNase 7 peptide showed greater bactericidal activity against UPEC. Wild-type RNase 7 overexpression in human urothelial cultures reduced UPEC invasive infection compared with mutant overexpression. These results show that children with UTI have an increased prevalence of RNASE7 rs1263872, which may increase UTI susceptibility by suppressing RNase 7's antibacterial activity.


Asunto(s)
Péptidos Antimicrobianos/genética , Polimorfismo de Nucleótido Simple , Ribonucleasas/genética , Infecciones Urinarias/etiología , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Ribonucleasas/fisiología , Infecciones Urinarias/genética
3.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833876

RESUMEN

Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Ribonucleasas/metabolismo , Bacillus/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/fisiología , Humanos , Cinética , Modelos Moleculares , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico , Conformación Proteica/efectos de los fármacos , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/fisiología
4.
Biochemistry ; 60(22): 1755-1763, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33999611

RESUMEN

The dynamics of peptide-protein binding and unbinding of a variant of the RNase S system has been investigated. To initiate the process, a photoswitchable azobenzene moiety has been covalently linked to the S-peptide, thereby switching its binding affinity to the S-protein. Transient fluorescence quenching was measured with the help of a time-resolved fluorometer, which has been specifically designed for these experiments and is based on inexpensive light-emitting diodes and laser diodes only. One mutant shows on-off behavior with no specific binding detectable in one of the states of the photoswitch. Unbinding is faster by at least 2 orders of magnitude, compared to that of other variants of the RNase S system. We conclude that unbinding is essentially barrier-less in that case, revealing the intrinsic dynamics of the unbinding event, which occurs on a time scale of a few hundred microseconds in a strongly stretched-exponential manner.


Asunto(s)
Péptidos/metabolismo , Unión Proteica/fisiología , Ribonucleasas/metabolismo , Cinética , Péptidos/química , Proteínas/química , Proteínas/metabolismo , Ribonucleasas/fisiología , Ribonucleasas/ultraestructura , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos
5.
J Microbiol ; 59(4): 341-359, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33779951

RESUMEN

RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.


Asunto(s)
Regulación de la Expresión Génica , ARN/metabolismo , Ribonucleasas/fisiología , Transactivadores/fisiología , Fenómenos Bioquímicos , Estabilidad del ARN
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166086, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513427

RESUMEN

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by progressive destruction of the intrahepatic bile ducts. The immunopathology of PBC involves excessive inflammation; therefore, negative regulators of inflammatory response, such as Monocyte Chemoattractant Protein-1-Induced Protein-1 (MCPIP1) may play important roles in the development of PBC. The aim of this work was to verify whether Mcpip1 expression protects against development of PBC. Genetic deletion of Zc3h12a was used to characterize the role of Mcpip1 in the pathogenesis of PBC in 6-52-week-old mice. We found that Mcpip1 deficiency in the liver (Mcpip1fl/flAlbCre) recapitulates most of the features of human PBC, in contrast to mice with Mcpip1 deficiency in myeloid cells (Mcpip1fl/flLysMCre mice), which present with robust myeloid cell-driven systemic inflammation. In Mcpip1fl/flAlbCre livers, intrahepatic bile ducts displayed proliferative changes with inflammatory infiltration, bile duct destruction, and fibrosis leading to cholestasis. In plasma, increased concentrations of IgG, IgM, and AMA autoantibodies (anti-PDC-E2) were detected. Interestingly, the phenotype of Mcpip1fl/flAlbCre mice was robust in 6-week-old, but milder in 12-24-week-old mice. Hepatic transcriptome analysis of 6-week-old and 24-week-old Mcpip1fl/flAlbCre mice showed 812 and 8 differentially expressed genes, respectively, compared with age-matched control mice, and revealed a distinct set of genes compared to those previously associated with development of PBC. In conclusion, Mcpip1fl/flAlbCre mice display early postnatal phenotype that recapitulates most of the features of human PBC.


Asunto(s)
Autoanticuerpos/inmunología , Inmunoglobulinas/inmunología , Inflamación/patología , Cirrosis Hepática Biliar/patología , Cirrosis Hepática/patología , Fenotipo , Ribonucleasas/fisiología , Animales , Femenino , Inflamación/etiología , Inflamación/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática Biliar/etiología , Cirrosis Hepática Biliar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Plant Physiol ; 184(4): 1702-1716, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037127

RESUMEN

Recent studies have shown that loss of pollen-S function in S4' pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4') in S4' pollen (pollen harboring the SFB4' gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4' did not interact with S-RNase. However, a protein in S4' pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4' pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4' pollen proteins. Our screen identified the protein encoded by S 4 -SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S 4 -SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4' pollen.


Asunto(s)
Polinización/genética , Polinización/fisiología , Prunus avium/genética , Prunus avium/fisiología , Ribonucleasas/genética , Ribonucleasas/fisiología , Ubiquitinación/genética , Ubiquitinación/fisiología , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación
8.
Front Immunol ; 11: 370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210967

RESUMEN

The innate immune response represents a first-line defense against pathogen infection that has been widely conserved throughout evolution. Using the invertebrate Hirudo verbana (Annelida, Hirudinea) as an experimental model, we show here that the RNASET2 ribonuclease is directly involved in the immune response against Gram-positive bacteria. Injection of lipoteichoic acid (LTA), a key component of Gram-positive bacteria cell wall, into the leech body wall induced a massive migration of granulocytes and macrophages expressing TLR2 (the key receptor involved in the response to Gram-positive bacteria) toward the challenged/inoculated area. We hypothesized that the endogenous leech RNASET2 protein (HvRNASET2) might be involved in the antimicrobial response, as already described for other vertebrate ribonucleases, such as RNase3 and RNase7. In support of our hypothesis, HvRNASET2 was mainly localized in the granules of granulocytes, and its release in the extracellular matrix triggered the recruitment of macrophages toward the area stimulated with LTA. The activity of HvRNASET2 was also evaluated on Staphylococcus aureus living cells by means of light, transmission, and scanning electron microscopy analysis. HvRNASET2 injection triggered the formation of S. aureus clumps following a direct interaction with the bacterial cell wall, as demonstrated by immunogold assay. Taken together, our data support the notion that, during the early phase of leech immune response, granulocyte-released HvRNASET2 triggers bacterial clumps formation and, at the same time, actively recruits phagocytic macrophages in order to elicit a rapid and effective eradication of the infecting microorganisms from inoculated area.


Asunto(s)
Hirudo medicinalis/inmunología , Inmunidad Innata , Ribonucleasas/fisiología , Animales , Antígeno CD11b/fisiología , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Fagocitosis , Ácidos Teicoicos/farmacología , Receptor Toll-Like 2/fisiología
9.
Biochem J ; 476(19): 2927-2938, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31530713

RESUMEN

Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/química , ARN Viral/química , Ribonucleasas/fisiología , Factores de Transcripción/fisiología , Replicación Viral/fisiología , Infección por el Virus Zika/genética , Virus Zika/genética , Vectores Genéticos , Células HEK293 , Células HeLa , Humanos , Transfección
10.
Immunol Med ; 42(2): 53-64, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31449478

RESUMEN

Autoimmune disease is induced by the breakdown of immune tolerance to self-antigens. This is brought about by an imbalance between the activation and the repression of immune responses. Dysregulation of the immune response is driven by the excess of proinflammatory cytokines such as IL-6 and TNF, which play a central role in the pathogenesis of a set of autoimmune diseases. The expression of proinflammatory mediator genes is tightly controlled by post-transcriptional regulation, which is mediated by a set of immune-related RNA binding proteins, such as tristetraprolin, Roquin, and Regnase-1. These proteins coordinately control the stability of proinflammatory mRNAs to regulate aberrant immune reactions. In this review, we discuss the roles of RNA binding proteins which are associated with the immune regulation and autoimmune pathogenesis.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/inmunología , Proteínas de Unión al ARN/fisiología , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/fisiología , Factores de Transcripción/fisiología , Tristetraprolina/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
11.
Biochem Biophys Res Commun ; 515(2): 378-385, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31155290

RESUMEN

Atherosclerotic plaque rupture is the main cause of acute coronary syndrome (ACS). Angiotensin II (Ang II) and macrophage apoptosis are involved in the pathogenesis of atherosclerosis. However, the underlying mechanisms remain unclear. We aimed to address the role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in Ang II-induced macrophage apoptosis and vulnerable plaque formation. In mouse peritoneal macrophages, Ang II promoted endoplasmic reticulum (ER) stress-dependent macrophage apoptosis. Ang II markedly upregulated the expression of MCPIP1 via activating p38 mitogen-activated protein kinase (p38 MAPK). Treatment with MCPIP1 shRNA downregulated ER stress-related proteins and decreased macrophage apoptosis induced by Ang II. Ang II also activated the AMP-activated protein kinase (AMPK) signaling in macrophages. Inhibition of AMPK reduced macrophage apoptosis by inhibiting the p38 MAPK/MCPIP1/ER stress pathway. Furthermore, blocking the Ang II type 1 receptor (AT1R) with losartan effectively inhibited Ang II-induced macrophage apoptosis and AMPK/p38 MAPK/MCPIP1/ER pathway activation. In the atherosclerotic vulnerable plaque model in mice, losartan inhibited the progression of atherosclerosis and transformed vulnerable plaque into a more stable phenotype. Moreover, losartan markedly decreased the number of CD68+TUNEL+, CD68+MCPIP1+, CD68+p-eIF2α+ and CD68+CHOP+ cells in the lesion area. Taken together, Ang II promotes macrophage apoptosis via the AMPK/p38 MAPK/MCPIP1/ER stress pathway in macrophages via its receptor AT1R, which may contribute to vulnerable plaque formation. Our study clarifies a novel regulatory role of MCPIP1 in Ang II-induced macrophage apoptosis and plaque instability, providing a potential therapeutic target for prevention of ACS.


Asunto(s)
Angiotensina II/fisiología , Apoptosis/fisiología , Placa Aterosclerótica/etiología , Ribonucleasas/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Losartán/farmacología , Sistema de Señalización de MAP Quinasas , Macrófagos Peritoneales/patología , Macrófagos Peritoneales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Placa Aterosclerótica/patología , Placa Aterosclerótica/fisiopatología , Células RAW 264.7 , ARN Interferente Pequeño/genética , Receptor de Angiotensina Tipo 1/metabolismo , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/genética
12.
Nucleic Acids Res ; 47(13): 7035-7048, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114929

RESUMEN

The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Factor 4E Eucariótico de Iniciación/fisiología , Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Mensajero/genética , Proteínas Represoras/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , ARN Helicasas DEAD-box/fisiología , Regulación hacia Abajo , Endopeptidasas/fisiología , Genes Reporteros , Complejos Multiproteicos , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleasas/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Plant Physiol ; 179(3): 929-942, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679267

RESUMEN

Toxic proteins are prime targets for molecular farming (the generation of pharmacologically active or biotechnologically usable compounds in plants) and are also efficient tools for targeted cell ablation in genetics, developmental biology, and biotechnology. However, achieving conditional activity of cytotoxins and maintaining the toxin-expressing plants as stably transformed lines remain challenging. Here, we produce a switchable version of the highly cytotoxic bacterial RNase barnase by fusing the protein to a portable protein degradation cassette, the low-temperature degron cassette. This method allows conditional genetics based on conditional protein degradation via the N-end rule or N-degron pathway and has been used to vice versa accumulate and/or deplete a diverse variety of highly active, unstable or stable target proteins in different living multicellular organisms and cell systems. Moreover, we expressed the barnase fusion under control of the trichome-specific TRIPTYCHON promoter. This enabled efficient temperature-dependent control of protein accumulation in Arabidopsis (Arabidopsis thaliana) leaf hairs (trichomes). By tuning the levels of the protein, we were able to control the fate of trichomes in vivo. The on-demand formation of trichomes through manipulating the balance between stabilization and destabilization of barnase provides proof of concept for a robust and powerful tool for conditional switchable cell arrest. We present this tool as a potential strategy for the manufacture and accumulation of cytotoxic proteins and toxic high-value products in plants or for conditional genetic cell ablation.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Ribonucleasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Ribonucleasas/genética , Ribonucleasas/fisiología , Biología Sintética/métodos , Temperatura , /metabolismo , Tricomas/metabolismo
14.
PLoS Pathog ; 14(11): e1007331, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475899

RESUMEN

HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.


Asunto(s)
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Ribonucleasas/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Endorribonucleasas/genética , Regulación Viral de la Expresión Génica/genética , Células HeLa , Humanos , Estabilidad del ARN , ARN Mensajero/genética , ARN Viral/genética , Ribonucleasas/fisiología , Transcriptoma , Proteínas Virales/fisiología , Virión/metabolismo
15.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241607

RESUMEN

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Asunto(s)
Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/fisiología , Ribonucleasas/fisiología , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Microscopía por Crioelectrón/métodos , Endonucleasas/metabolismo , Células HEK293 , Humanos , Conformación Molecular , ARN/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleasas/metabolismo , Ribonucleasas/ultraestructura
16.
Nat Plants ; 4(9): 651-654, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104651

RESUMEN

Re-domestication of potato into an inbred line-based diploid crop propagated by seed represents a promising alternative to traditional clonal propagation of tetraploid potato, but self-incompatibility has hindered the development of inbred lines. To address this problem, we created self-compatible diploid potatoes by knocking out the self-incompatibility gene S-RNase using the CRISPR-Cas9 system. This strategy opens new avenues for diploid potato breeding and will also be useful for studying other self-incompatible crops.


Asunto(s)
Diploidia , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Plantas/genética , Polinización , Ribonucleasas/genética , Autofecundación , Solanum tuberosum/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Polinización/genética , Polinización/fisiología , Reacción en Cadena de la Polimerasa , Ribonucleasas/fisiología , Autofecundación/genética , Autofecundación/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/fisiología
17.
Microbiol Spectr ; 6(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651979

RESUMEN

RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis, the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis, the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.


Asunto(s)
ADN Helicasas/fisiología , Bacterias Grampositivas/enzimología , Ribonucleasas/fisiología , Proteínas Bacterianas , Endorribonucleasas/fisiología , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Estabilidad del ARN , Ribonucleasas/clasificación , Especificidad por Sustrato
18.
Pediatr Neonatol ; 59(3): 288-295, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29054363

RESUMEN

BACKGROUND: The uncontrolled inflammatory response following infection is closely related to the morbidity and mortality of neonates. Interleukin 6 (IL-6) plays an important role in the pathogenesis and prognosis of this process. To better elucidate the secretion of IL-6 following infection in neonates, we investigated the IL-6 level and mechanism of IL-6/TLR4 signaling pathways. METHODS: We compared the IL-6, procalcitonin (PCT), and CRP levels between septic neonates and toddlers. In vitro cord blood samples from healthy term neonates and peripheral venous blood from healthy adult volunteers were collected. Protein expression was analyzed by Western blotting, mRNA expression by real-time PCR and membrane molecule expression by flow cytometry. RESULTS: The IL-6 concentrations were significantly higher in the neonate group than in the toddler group (p < 0.05). In the toddler group, the IL-6 concentrations were correlated positively with both PCT and CRP (PCT: r = 0.451, p = 0.001; CRP: r = 0.243, p = 0.023). In vitro, the secretion of IL-6 increased with the rising concentrations of LPS; at 1000 ng/ml LPS, IL-6 secretion from the monocytes of neonates was significantly higher than that of adults. There was a marked decreased level of MyD88 in neonate monocytes compared with that in adult monocytes. Additionally, the mRNA levels of Zc3h12a in neonate monocytes were significantly lower than those in adult monocytes following LPS stimulation. CONCLUSION: Neonates displayed enhanced IL-6 production after infection. Our study, for the first time, reported a significant decrease in the expression of Zc3h12a in neonates. Thus, Zc3h12a may be a key factor for the aberrant increase in IL-6 after neonate infection.


Asunto(s)
Interleucina-6/biosíntesis , Lipopolisacáridos/farmacología , Monocitos/inmunología , Ribonucleasas/fisiología , Factores de Transcripción/fisiología , Adulto , Proteína C-Reactiva/análisis , Niño , Preescolar , Humanos , Recién Nacido , FN-kappa B/fisiología , Polipéptido alfa Relacionado con Calcitonina/sangre , Receptor Toll-Like 4/fisiología
19.
J Immunol ; 199(12): 4066-4077, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29127149

RESUMEN

Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically.


Asunto(s)
Miocarditis/inmunología , Miocardio/patología , Ribonucleasas/fisiología , Células TH1/inmunología , Ubiquitina-Proteína Ligasas/fisiología , Regiones no Traducidas 3' , Animales , Fibrosis , Furina/biosíntesis , Furina/genética , Regulación de la Expresión Génica/inmunología , Células HeLa , Homeostasis , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucina-4/biosíntesis , Interleucina-4/genética , Células Jurkat , Activación de Linfocitos , Linfopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Miocarditis/genética , ARN Mensajero/biosíntesis , Receptores de Interleucina-12/biosíntesis , Receptores de Interleucina-12/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/deficiencia , Ribonucleasas/genética , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología , Células TH1/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...